A key serine for the GTPase-activating protein function of regulator of G protein signaling proteins is not a general target for 14-3-3 interactions.

نویسندگان

  • Richard J Ward
  • Graeme Milligan
چکیده

Mammalian regulator of G protein signaling (RGS) proteins are highly conserved within the RGS domain. Of amino acids that are universal, a serine residue at the C terminus of this domain has been described as the binding site in RGS7 for 14-3-3 proteins. However, studies with the related RGS3 indicate that the site of interaction is not within the RGS domain. We confirm that the interaction of RGS3 with 14-3-3tau and 14-3-3zeta requires Ser264 and not the RGS domain and show both that mutation of the conserved RGS domain serine, Ser496 in RGS3, to either alanine or aspartate does not prevent binding of 14-3-3 proteins and that 14-3-3 proteins do not inhibit GTPase-activating protein (GAP) activity against receptor-activated Galpha(o1). However, mutation of Ser496 does directly impair the action of RGS3 as a GAP against receptor-activated Galpha(o1). We mutated the equivalent serine residue in the family B/R4 RGS proteins RGS1 and RGS16. Using two distinct assay formats, conversion to aspartate virtually abolished GAP activity, whereas conversion to alanine decreased potency 20-fold. Neither alteration modulated interactions with 14-3-3tau or 14-3-3zeta, but the 14-3-3 proteins did not modulate the GAP activity of the wild-type or mutant RGS proteins. Although interactions between 14-3-3 proteins and many RGS proteins can be observed, this does not involve this conserved serine and does not inherently modify GAP function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets.

Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein for the G-α-q and G-α-i subunits of heterotrimeric G-proteins that turns off signaling by G-protein coupled receptors. RGS18 is highly expressed in platelets. In the present study, we show that the 14-3-3γ protein binds to phosphorylated serines 49 and 218 of RGS18. Platelet activation by thrombin, thromboxane A2, or ADP...

متن کامل

Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-activating protein Rap1GAP2 in platelets.

GTPase-activating proteins are required to terminate signaling by Rap1, a small guanine nucleotide-binding protein that controls integrin activity and cell adhesion. Recently, we identified Rap1GAP2, a GTPase-activating protein of Rap1 in platelets. Here we show that 14-3-3 proteins interact with phosphorylated serine 9 at the N terminus of Rap1GAP2. Platelet activation by ADP and thrombin enha...

متن کامل

PLATELETS AND THROMBOPOIESIS Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets

Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein for the G-q and G-i subunits of heterotrimeric Gproteins that turns off signaling by G-protein coupled receptors. RGS18 is highly expressed in platelets. In the present study, we show that the 14-3-3 protein binds to phosphorylated serines 49 and 218 of RGS18. Platelet activation by thrombin, thromboxaneA2, orADP stimula...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Biochemical Aspects of Protein Changes in Seed Physiology and Germination

Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, many researchers showes that ligand–receptor mediated signaling promotes reactive oxygen species– dependent protein carbonylation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 68 6  شماره 

صفحات  -

تاریخ انتشار 2005